Improvement of Long Binary Sequence Merit Factors using Modified Legendre Algorithms
نویسندگان
چکیده
Low autocorrelation binary sequence (LABS) detection is a classic problem in the literature. We use these sequences in many real-life applications. The detection of these sequences involves many problems. In the literature, various methods have been developed to approach the LABS issue. Based on the length of the sequence, an appropriate method can be selected and implemented. For short length sequences, linear search is possible and as the length increases we can implement various stochastic optimization algorithms. In our case that is for long binary sequences, we can use construction methods. Kristiansen and Parker [1] in their work have shown that Legendre sequences with periodic rotation can achieve a merit factor of 6. 34. We have applied these Legendre sequences to steepest descent and prime step algorithms with some modifications. We call these techniques as modified Legendre algorithms. Using these improved methods we were able to achieve a merit factor of 6. 4245 for long binary sequences.
منابع مشابه
The merit factor of binary sequence families constructed from m-sequences
We consider the asymptotic merit factor of two binary sequence families obtained from an initial binary sequence family using a “negaperiodic” and a “periodic” construction. When the initial sequences are m-sequences, both of the constructed families have the same asymptotic merit factor as the initial family, at all rotations of sequence elements. A similar property was previously shown to hol...
متن کاملPeak Side Lobe Levels of Legendre and Rudin-Shapiro Sequences: Families of Binary Sequences
Student, Assistant Professor Associate Professor Lendi Institute of Engineering and Technology, VZM, INDIA. Abstract: The peak side lobe level (PSL) is numerically estimated for Rudin-shapiro sequences and Legendre sequences which belong to the families of Binary sequences. Notable similarities are presented between PSL and merit factor behavior under cyclic rotations of the sequences (i.e. 1/4...
متن کاملTwo binary sequence families with large merit factor
We calculate the asymptotic merit factor, under all rotations of sequence elements, of two families of binary sequences derived from Legendre sequences. The rotation is negaperiodic for the first family, and periodic for the second family. In both cases the maximum asymptotic merit factor is 6. As a consequence, we obtain the first two families of skew-symmetric sequences with known asymptotic ...
متن کاملAppended m-Sequences with Merit Factor Greater than 3.34
We consider the merit factor of binary sequences obtained by appending an initial fraction of an m-sequence to itself. We show that, for all sufficiently large n, there is some rotation of each m-sequence of length n that has merit factor greater than 3.34 under suitable appending. This is the first proof that the asymptotic merit factor of a binary sequence family can be increased under append...
متن کاملThe merit factor of binary sequences related to difference sets
Long binary sequences related to cyclic difference sets are investigated. Among all known constructions of cyclic difference sets we show that only sequences constructed from Hadamard difference sets can have an asymptotic nonzero merit factor. Maximal length shift register sequences, Legendre, and twin-prime sequences are all constructed from Hadamard difference sets. We prove that the asympto...
متن کامل